creates a column for the protein dataset after agregation by using the previous peptide dataset.
Source:R/aggregation.R
BuildColumnToProteinDataset.Rd
This function creates a column for the protein dataset after aggregation by using the previous peptide dataset.
Arguments
- peptideData
A data.frame of meta data of peptides. It is the rowData of the SummarizedExperiment object.
- matAdj
The adjacency matrix used to agregate the peptides data.
- columnName
The name(s) of the column in Biobase::rowData(peptides_MSnset) that the user wants to keep in the new protein data.frame.
- proteinNames
The names of the protein in the new dataset (i.e. rownames)
Examples
library(QFeatures)
#> Loading required package: MultiAssayExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> Loading required package: generics
#>
#> Attaching package: ‘generics’
#> The following objects are masked from ‘package:base’:
#>
#> as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
#> setequal, union
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
#> mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
#> rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
#> unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#>
#> findMatches
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#>
#> rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#>
#> anyMissing, rowMedians
#>
#> Attaching package: ‘QFeatures’
#> The following object is masked from ‘package:base’:
#>
#> sweep
data(Exp1_R25_pept, package="DaparToolshedData")
obj <- Exp1_R25_pept[1:10]
protID <- parentProtId(obj[[2]])
X <- QFeatures::adjacencyMatrix(obj[[2]])
X.split <- DaparToolshed::splitAdjacencyMat(X)
X.shared <- X.split$Xshared
X.unique <- X.split$Xspec
#adjacencyMatrix(obj[[2]]) <- X.unique
#rowdata.pep <- rowData(obj[[2]])
# obj <- aggregateFeatures4Prostar(
# object = obj,
# i = length(obj),
# name = 'aggregated',
# fcol = 'adjacencyMatrix',
# fun = 'colSumsMat')
#
#
# .names <- "Sequence"
#
# proteinNames <- rownames(obj[[length(obj)]])
# data <- rowData(obj[[length(obj)-1]])
#
# new.col <- BuildColumnToProteinDataset(
# peptideData = rowData(obj[[length(obj)-1]]),
# matAdj = adjacencyMatrix(obj[[2]]),
# columnName = "Sequence",
# proteinNames = rownames(obj[[length(obj)]]))