Package index
-
Add_Aggregated_rowData()
- Add aggregated rowData
-
BuildAdjacencyMatrix()
- Function matrix of appartenance group
-
BuildColumnToProteinDataset()
- creates a column for the protein dataset after agregation by using the previous peptide dataset.
-
BuildMetacell()
- metacell function which xxx
-
Children()
- Names of all chidren of a node
-
CleanRowData()
- Customised resetZoomButton of highcharts plots
-
ConvertListToHtml()
- Convert a list to unnumbered HTML list
-
CountPep()
- Compute the number of peptides used to aggregate proteins
-
aggregateFeatures4Prostar()
aggQmetacell()
aggregateMethods()
- Aggregate an assay's quantitative features
-
aggregateRedistribution()
- Aggregate an assay's quantitative features with shared peptide redistribution
-
DaparToolshed
- DaparToolshed: A package for computating the notorious bar statistic
-
ExtendPalette()
- Extends a base-palette of the package RColorBrewer to n colors.
-
GetColorsForConditions()
- Builds a complete color palette for the conditions given in argument
-
GetDetailedNbPeptides()
- Computes the detailed number of peptides for each protein
-
GetDetailedNbPeptidesUsed()
- Computes the detailed number of peptides used for aggregating each protein
-
GetIndices_BasedOnConditions()
- Search lines which respects request on one or more conditions.
-
GetIndices_FunFiltering()
- Delete the lines in the matrix of intensities and the metadata table given their indices.
-
GetIndices_WholeLine()
- Search lines which respects query on all their elements.
-
GetIndices_WholeMatrix()
- Search lines which respects request on one or more conditions.
-
GetNbPeptidesUsed()
- Computes the number of peptides used for aggregating each protein
-
GetNbTags()
- Number of each metacell tags
-
GetSoftAvailables()
- The set of available softwares to convert from
-
GraphPepProt()
- Function to create a histogram that shows the repartition of peptides w.r.t. the proteins
-
LH0()
- xxxxxx
-
LH0.lm()
- xxxxxx
-
LH1()
- xxxxxx
-
LH1.lm()
- xxxxxx
-
MetacellFilteringScope()
- Lists the metacell scopes for filtering
-
Metacell_DIA_NN()
- Sets the metacell dataframe for datasets which are from Dia-NN software
-
Metacell_maxquant()
- Sets the metacell dataframe
-
Metacell_proline()
- Sets the metacell dataframe for datasets which are from Proline software
-
NAIsZero()
- xxx
-
OWAnova()
- Applies aov() on a vector of protein abundances using the design derived from the sample names (simple aov wrapper)
-
Parent()
- Parent name of a node
-
Pipelines()
- xxx
-
ProstarVersions()
- Version number of Prostar suite
-
paramshistory()
`paramshistory<-`()
GetMetacellTags()
qMetacell()
`qMetacell<-`()
GetUniqueTags()
.GetMetadataSlot()
.GetRowdataSlot()
ConnectedComp()
`ConnectedComp<-`()
typeDataset()
`typeDataset<-`()
idcol()
`idcol<-`()
parentProtId()
`parentProtId<-`()
filename()
`filename<-`()
analysis()
`analysis<-`()
version()
`version<-`()
design.qf()
`design.qf<-`()
mainAssay()
HypothesisTest()
`HypothesisTest<-`()
DifferentialAnalysis()
`DifferentialAnalysis<-`()
names_metacell()
`names_metacell<-`()
- List of metacell tags
-
write2excel()
.write2excel()
addColors()
- Exports a
QFeatures
object to a Excel file.
-
FunctionFilter()
filterFeaturesOneSE()
- Filter features of one SE based on their rowData
-
last_assay()
n_assays_in_qf()
- Utility funcitons to dela with QFeatures objects.
-
ReplaceSpecialChars()
- Standardize names
-
RunAggregation()
- Aggregation of peptide-level assay QFeatures
-
AdjMatFilters()
allPeptides()
specPeptides()
subAdjMat_specificPeptides()
sharedPeptides()
subAdjMat_sharedPeptides()
topnFunctions()
topnPeptides()
subAdjMat_topnPeptides()
- Filter a peptide assay on the basis of its adjacency matrix.
-
applyAnovasOnProteins()
- iteratively applies OWAnova() on the features of an MSnSet object
-
buildGraph()
- Display a CC
-
check.conditions()
- Check if the design is valid
-
check.design()
- Check if the design is valid
-
classic1wayAnova()
- Function to perform a One-way Anova statistical test on a MsnBase dataset
-
plotCompareAssays()
- Compare two assays
-
compareNormalizationD_HC()
- Builds a plot from a dataframe. Same as compareNormalizationD but uses the library
highcharter
-
compute.selection.table()
- Applies an FDR threshold on a table of adjusted p-values and summarizes the results
-
compute_t_tests()
- xxxxxx
-
create_ft_example()
- Creates an example dataset
-
display.CC.visNet()
- Display a CC
-
formatLimmaResult()
- xxxx
-
formatPHResults()
- Extract logFC and raw pvalues from multiple post-hoc models summaries
-
ft
- ft dataset
-
ft_na
- ft_na dataset
-
fudge2LRT()
- Heuristic to choose the value of the hyperparameter (fudge factor) used to regularize the variance estimator in the likelihood ratio statistic
-
get.pep.prot.cc()
- Build the list of connex composant of the adjacency matrix
-
getDesignLevel()
- xxx
-
GetExtension()
- Extension of a file
-
getListNbValuesInLines()
- Returns the possible number of values in lines in the data
-
getNumberOfEmptyLines()
- Returns the number of empty lines in the data
-
getProteinsStats()
- Computes the number of proteins that are only defined by specific peptides, shared peptides or a mixture of two.
-
globalAdjPval()
- Computes the adjusted p-values on all the stacked contrasts using CP4P
-
hc_logFC_DensityPlot()
- Density plots of logFC values
-
createQFeatures()
- Creates an object of class
QFeatures
from text file.
-
impute.pa2()
- Missing values imputation from a
MSnSet
object
-
inner.aggregate.iter()
- Aggregation of quantitative data with redistribution of shared peptides
-
inner.mean()
- Mean-based aggregation
-
inner.median()
- Median-based aggregation
-
inner.medianpolish()
- medianPolish-based aggregation
-
inner.robustsummary()
- robustSummary-based aggregation
-
inner.sum()
- Sum-based aggregation
-
is.OfType()
- Similar to the function
is.na()
but focused on the equality with the paramter 'type'.
-
is.subset()
- xxx
-
limmaCompleteTest()
- Computes a hierarchical differential analysis
-
make.contrast()
- Builds the contrast matrix
-
make.design.1()
- Builds the design matrix for designs of level 1
-
make.design.2()
- Builds the design matrix for designs of level 2
-
make.design.3()
- Builds the design matrix for designs of level 3
-
make.design()
- Builds the design matrix
-
match.metacell()
- Similar to the function
is.na()
but focused on the equality with the paramter 'type'.
-
metacellPerLinesHisto_HC()
metacellPerLinesHistoPerCondition_HC()
metacellHisto_HC()
wrapper.mvImage()
mvImage()
hc_mvTypePlot2()
- Bar plot of missing values per lines using highcharter
-
metacell_agg()
- Metacell aggregation
-
findMECBlock()
reIntroduceMEC()
wrapper.impute.KNN()
wrapper.impute.fixedValue()
wrapper.impute.pa()
wrapper.impute.detQuant()
getQuantile4Imp()
wrapper.impute.slsa()
- Finds the LAPALA
-
my_hc_ExportMenu()
- Customised contextual menu of highcharts plots
-
my_hc_chart()
- Customised resetZoomButton of highcharts plots
-
nEmptyLines()
- Number of empty lines in the data
-
nonzero()
- Retrieve the indices of non-zero elements in sparse matrices
-
normalizeMethods()
GlobalQuantileAlignment()
SumByColumns()
QuantileCentering()
MeanCentering()
vsn()
LOESS()
- Normalisation
-
readExcel()
listSheets()
write_Assay_To_Excel()
WriteHistory()
Write_SamplesData_to_Excel()
Write_RowData()
write.excel()
- This function exports a data.frame to a Excel file.
-
pepa.test()
- PEptide based Protein differential Abundance test
-
plotJitter()
- Jitter plot of CC
-
plotJitter_rCharts()
- Display a a jitter plot for CC
-
postHocTest()
- Post-hoc tests for classic 1-way ANOVA
-
SymFilteringOperators()
qMetacellFilteringScope()
qMetacellWholeMatrix()
qMetacellWholeLine()
qMetacellOnConditions()
- Search lines which respects request on one or more conditions.
-
metacell.def()
custom_metacell_colors()
Set_POV_MEC_tags()
Set_POV_MEC_tags2()
Metacell_generic()
UpdateMetacellAfterImputation()
search.metacell.tags()
metacombine()
- Quantitative metadata vocabulary for entities
-
samLRT()
- xxxxxx
-
select_topn()
- Selection of top n peptides
-
separateAdjPval()
- Computes the adjusted p-values separately on contrast using CP4P
-
splitAdjacencyMat()
- splits an adjacency matrix into specific and shared
-
test.design()
- Check if xxxxxx
-
testAnovaModels()
- Applies a statistical test on each element of a list of linear models
-
translatedRandomBeta()
- Generator of simulated values
-
wrapper.dapar.impute.mi()
- Missing values imputation using the LSimpute algorithm.
-
wrapper.impute.mle()
- Imputation of peptides having no values in a biological condition.
-
wrapper.impute.pa2()
- Missing values imputation from a
MSnSet
object
-
wrapperClassic1wayAnova()
- Wrapper for One-way Anova statistical test