Skip to contents

All functions

Add_Aggregated_rowData()
Add aggregated rowData
Add_Item_to_Dataset()
xxx
BuildAdjacencyMatrix()
Function matrix of appartenance group
BuildColumnToProteinDataset()
creates a column for the protein dataset after agregation by using the previous peptide dataset.
BuildMetacell()
metacell function which xxx
Children()
Names of all chidren of a node
CleanRowData()
Customised resetZoomButton of highcharts plots
ConvertListToHtml()
Convert a list to unnumbered HTML list
CountPep()
Compute the number of peptides used to aggregate proteins
aggregateFeatures4Prostar() aggQmetacell() aggregateMethods()
Aggregate an assay's quantitative features
aggregateRedistribution()
Aggregate an assay's quantitative features with shared peptide redistribution
DaparToolshed
DaparToolshed: A package for computating the notorious bar statistic
ExtendPalette()
Extends a base-palette of the package RColorBrewer to n colors.
ExtractUniquePeptides()
Test
GetColorsForConditions()
Builds a complete color palette for the conditions given in argument
GetDetailedNbPeptides()
Computes the detailed number of peptides for each protein
GetDetailedNbPeptidesUsed()
Computes the detailed number of peptides used for aggregating each protein
GetIndices_BasedOnConditions()
Search lines which respects request on one or more conditions.
GetIndices_FunFiltering()
Delete the lines in the matrix of intensities and the metadata table given their indices.
GetIndices_WholeLine()
Search lines which respects query on all their elements.
GetIndices_WholeMatrix()
Search lines which respects request on one or more conditions.
GetNbPeptidesUsed()
Computes the number of peptides used for aggregating each protein
GetNbTags()
Number of each metacell tags
GetSoftAvailables()
The set of available softwares to convert from
GraphPepProt()
Function to create a histogram that shows the repartition of peptides w.r.t. the proteins
Keep_Items_from_Dataset()
xxx
LH0()
xxxxxx
LH0.lm()
xxxxxx
LH1()
xxxxxx
LH1.lm()
xxxxxx
MetacellFilteringScope()
Lists the metacell scopes for filtering
Metacell_DIA_NN()
Sets the metacell dataframe for datasets which are from Dia-NN software
Metacell_maxquant()
Sets the metacell dataframe
Metacell_proline()
Sets the metacell dataframe for datasets which are from Proline software
NAIsZero()
xxx
OWAnova()
Applies aov() on a vector of protein abundances using the design derived from the sample names (simple aov wrapper)
Parent()
Parent name of a node
Pipelines()
xxx
ProstarVersions()
Version number of Prostar suite
paramshistory() `paramshistory<-`() GetMetacellTags() qMetacell() `qMetacell<-`() GetUniqueTags() .GetMetadataSlot() .GetRowdataSlot() ConnectedComp() `ConnectedComp<-`() typeDataset() `typeDataset<-`() idcol() `idcol<-`() parentProtId() `parentProtId<-`() filename() `filename<-`() analysis() `analysis<-`() version() `version<-`() design.qf() `design.qf<-`() mainAssay() HypothesisTest() `HypothesisTest<-`() DifferentialAnalysis() `DifferentialAnalysis<-`() names_metacell() `names_metacell<-`()
List of metacell tags
write2excel() .write2excel() addColors()
Exports a QFeatures object to a Excel file.
FunctionFilter() filterFeaturesOneSE()
Filter features of one SE based on their rowData
last_assay() n_assays_in_qf()
Utility funcitons to dela with QFeatures objects.
ReplaceSpecialChars()
Standardize names
RunAggregation()
Aggregation of peptide-level assay QFeatures
AdjMatFilters() allPeptides() specPeptides() subAdjMat_specificPeptides() sharedPeptides() subAdjMat_sharedPeptides() topnFunctions() topnPeptides() subAdjMat_topnPeptides()
Filter a peptide assay on the basis of its adjacency matrix.
applyAnovasOnProteins()
iteratively applies OWAnova() on the features of an MSnSet object
buildGraph()
Display a CC
check.conditions()
Check if the design is valid
check.design()
Check if the design is valid
classic1wayAnova()
Function to perform a One-way Anova statistical test on a MsnBase dataset
plotCompareAssays()
Compare two assays
compareNormalizationD_HC()
Builds a plot from a dataframe. Same as compareNormalizationD but uses the library highcharter
compute.selection.table()
Applies an FDR threshold on a table of adjusted p-values and summarizes the results
compute_t_tests()
xxxxxx
create_ft_example()
Creates an example dataset
display.CC.visNet()
Display a CC
formatHSDResults()
xxx
formatLimmaResult()
xxxx
formatPHResults()
Extract logFC and raw pvalues from multiple post-hoc models summaries
formatPHTResults()
xxx
ft
ft dataset
ft_na
ft_na dataset
fudge2LRT()
Heuristic to choose the value of the hyperparameter (fudge factor) used to regularize the variance estimator in the likelihood ratio statistic
get.pep.prot.cc()
Build the list of connex composant of the adjacency matrix
getDesignLevel()
xxx
GetExtension()
Extension of a file
getListNbValuesInLines()
Returns the possible number of values in lines in the data
getNumberOfEmptyLines()
Returns the number of empty lines in the data
getProteinsStats()
Computes the number of proteins that are only defined by specific peptides, shared peptides or a mixture of two.
globalAdjPval()
Computes the adjusted p-values on all the stacked contrasts using CP4P
hc_logFC_DensityPlot()
Density plots of logFC values
createQFeatures()
Creates an object of class QFeatures from text file.
impute.pa2()
Missing values imputation from a MSnSet object
inner.aggregate.iter()
Aggregation of quantitative data with redistribution of shared peptides
inner.mean()
Mean-based aggregation
inner.median()
Median-based aggregation
inner.medianpolish()
medianPolish-based aggregation
inner.robustsummary()
robustSummary-based aggregation
inner.sum()
Sum-based aggregation
is.OfType()
Similar to the function is.na() but focused on the equality with the paramter 'type'.
is.subset()
xxx
limmaCompleteTest()
Computes a hierarchical differential analysis
make.contrast()
Builds the contrast matrix
make.design.1()
Builds the design matrix for designs of level 1
make.design.2()
Builds the design matrix for designs of level 2
make.design.3()
Builds the design matrix for designs of level 3
make.design()
Builds the design matrix
match.metacell()
Similar to the function is.na() but focused on the equality with the paramter 'type'.
metacellPerLinesHisto_HC() metacellPerLinesHistoPerCondition_HC() metacellHisto_HC() wrapper.mvImage() mvImage() hc_mvTypePlot2()
Bar plot of missing values per lines using highcharter
metacell_agg()
Metacell aggregation
findMECBlock() reIntroduceMEC() wrapper.impute.KNN() wrapper.impute.fixedValue() wrapper.impute.pa() wrapper.impute.detQuant() getQuantile4Imp() wrapper.impute.slsa()
Finds the LAPALA
my_hc_ExportMenu()
Customised contextual menu of highcharts plots
my_hc_chart()
Customised resetZoomButton of highcharts plots
nEmptyLines()
Number of empty lines in the data
nonzero()
Retrieve the indices of non-zero elements in sparse matrices
normalizeMethods() GlobalQuantileAlignment() SumByColumns() QuantileCentering() MeanCentering() vsn() LOESS()
Normalisation
readExcel() listSheets() write_Assay_To_Excel() WriteHistory() Write_SamplesData_to_Excel() Write_RowData() write.excel()
This function exports a data.frame to a Excel file.
pepa.test()
PEptide based Protein differential Abundance test
plotJitter()
Jitter plot of CC
plotJitter_rCharts()
Display a a jitter plot for CC
postHocTest()
Post-hoc tests for classic 1-way ANOVA
SymFilteringOperators() qMetacellFilteringScope() qMetacellWholeMatrix() qMetacellWholeLine() qMetacellOnConditions()
Search lines which respects request on one or more conditions.
metacell.def() custom_metacell_colors() Set_POV_MEC_tags() Set_POV_MEC_tags2() Metacell_generic() UpdateMetacellAfterImputation() search.metacell.tags() metacombine()
Quantitative metadata vocabulary for entities
samLRT()
xxxxxx
select_topn()
Selection of top n peptides
separateAdjPval()
Computes the adjusted p-values separately on contrast using CP4P
splitAdjacencyMat()
splits an adjacency matrix into specific and shared
test.design()
Check if xxxxxx
testAnovaModels()
Applies a statistical test on each element of a list of linear models
thresholdpval4fdr()
xxx
translatedRandomBeta()
Generator of simulated values
wrapper.dapar.impute.mi()
Missing values imputation using the LSimpute algorithm.
wrapper.impute.mle()
Imputation of peptides having no values in a biological condition.
wrapper.impute.pa2()
Missing values imputation from a MSnSet object
wrapperClassic1wayAnova()
Wrapper for One-way Anova statistical test