Missing values imputation using the LSimpute algorithm.
Source:R/missingValuesImputation_PeptideLevel.R
wrapper.dapar.impute.mi.Rd
This method is a wrapper to the function impute.mi()
of the package
imp4p
adapted to an object of class MSnSet
.
Usage
wrapper.dapar.impute.mi(
obj,
design,
nb.iter = 3,
nknn = 15,
selec = 600,
siz = 500,
weight = 1,
ind.comp = 1,
progress.bar = FALSE,
x.step.mod = 300,
x.step.pi = 300,
nb.rei = 100,
method = 4,
gridsize = 300,
q = 0.95,
q.min = 0,
q.norm = 3,
eps = 0,
methodi = "slsa",
lapala = TRUE,
distribution = "unif"
)
Arguments
- obj
An object of class
SummarizedExperiment
.- design
xxx
- nb.iter
Same as the function
mi.mix
in the packageimp4p
- nknn
Same as the function
mi.mix
in the packageimp4p
- selec
Same as the function
mi.mix
in the packageimp4p
- siz
Same as the function
mi.mix
in the packageimp4p
- weight
Same as the function
mi.mix
in the packageimp4p
- ind.comp
Same as the function
mi.mix
in the packageimp4p
- progress.bar
Same as the function
mi.mix
in the packageimp4p
- x.step.mod
Same as the function
estim.mix
in the packageimp4p
- x.step.pi
Same as the function
estim.mix
in the packageimp4p
- nb.rei
Same as the function
estim.mix
in the packageimp4p
- method
Same as the function
estim.mix
in the packageimp4p
- gridsize
Same as the function
estim.mix
in the packageimp4p
- q
Same as the function
mi.mix
in the packageimp4p
- q.min
Same as the function
impute.pa
in the packageimp4p
- q.norm
Same as the function
impute.pa
in the packageimp4p
- eps
Same as the function
impute.pa
in the packageimp4p
- methodi
Same as the function
mi.mix
in the packageimp4p
- lapala
xxxxxxxxxxx
- distribution
The type of distribution used. Values are
unif
(default) orbeta
.
Examples
utils::data(Exp1_R25_pept, package = "DaparToolshedData")
obj <- Exp1_R25_pept[seq_len(500)]
design <- design.qf(obj)
level <- 'protein'
metacell.mask <- DaparToolshed::match.metacell(qMetacell(obj[[1]]), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj.imp.na <- wrapper.dapar.impute.mi(obj[[1]], design, nb.iter = 1, lapala = TRUE)
#> Warning: tab.imp contains missing values
#>
#> Iterations:
#>
#> 1 / 1 - Imputation MNAR OK -
#> Imputation MCAR in progress -
#> 0 % - 1 % - 1 % - 2 % - 3 % - 3 % - 4 % - 4 % - 5 % - 6 % - 6 % - 7 % - 8 % - 8 % - 9 % - 9 % - 10 % - 11 % - 11 % - 12 % - 13 % - 13 % - 14 % - 14 % - 15 % - 16 % - 16 % - 17 % - 18 % - 18 % - 19 % - 19 % - 20 % - 21 % - 21 % - 22 % - 22 % - 23 % - 24 % - 24 % - 25 % - 26 % - 26 % - 27 % - 27 % - 28 % - 29 % - 29 % - 30 % - 31 % - 31 % - 32 % - 32 % - 33 % - 34 % - 34 % - 35 % - 36 % - 36 % - 37 % - 37 % - 38 % - 39 % - 39 % - 40 % - 40 % - 41 % - 42 % - 42 % - 43 % - 44 % - 44 % - 45 % - 45 % - 46 % - 47 % - 47 % - 48 % - 49 % - 49 % - 50 % - 50 % - 51 % - 52 % - 52 % - 53 % - 54 % - 54 % - 55 % - 55 % - 56 % - 57 % - 57 % - 58 % - 59 % - 59 % - 60 % - 60 % - 61 % - 62 % - 62 % - 63 % - 63 % - 64 % - 65 % - 65 % - 66 % - 67 % - 67 % - 68 % - 68 % - 69 % - 70 % - 70 % - 71 % - 72 % - 72 % - 73 % - 73 % - 74 % - 75 % - 75 % - 76 % - 77 % - 77 % - 78 % - 78 % - 79 % - 80 % - 80 % - 81 % - 81 % - 82 % - 83 % - 83 % - 84 % - 85 % - 85 % - 86 % - 86 % - 87 % - 88 % - 88 % - 89 % - 90 % - 90 % - 91 % - 91 % - 92 % - 93 % - 93 % - 94 % - 95 % - 95 % - 96 % - 96 % - 97 % - 98 % - 98 % - 99 % - 99 % -
obj.imp.pov <- wrapper.dapar.impute.mi(obj[[1]], design, nb.iter = 1, lapala = FALSE)
#> Warning: tab.imp contains missing values
#>
#> Iterations:
#>
#> 1 / 1 - Imputation MNAR OK -
#> Imputation MCAR in progress -
#> 0 % - 1 % - 1 % - 2 % - 3 % - 3 % - 4 % - 4 % - 5 % - 6 % - 6 % - 7 % - 8 % - 8 % - 9 % - 9 % - 10 % - 11 % - 11 % - 12 % - 13 % - 13 % - 14 % - 14 % - 15 % - 16 % - 16 % - 17 % - 18 % - 18 % - 19 % - 19 % - 20 % - 21 % - 21 % - 22 % - 22 % - 23 % - 24 % - 24 % - 25 % - 26 % - 26 % - 27 % - 27 % - 28 % - 29 % - 29 % - 30 % - 31 % - 31 % - 32 % - 32 % - 33 % - 34 % - 34 % - 35 % - 36 % - 36 % - 37 % - 37 % - 38 % - 39 % - 39 % - 40 % - 40 % - 41 % - 42 % - 42 % - 43 % - 44 % - 44 % - 45 % - 45 % - 46 % - 47 % - 47 % - 48 % - 49 % - 49 % - 50 % - 50 % - 51 % - 52 % - 52 % - 53 % - 54 % - 54 % - 55 % - 55 % - 56 % - 57 % - 57 % - 58 % - 59 % - 59 % - 60 % - 60 % - 61 % - 62 % - 62 % - 63 % - 63 % - 64 % - 65 % - 65 % - 66 % - 67 % - 67 % - 68 % - 68 % - 69 % - 70 % - 70 % - 71 % - 72 % - 72 % - 73 % - 73 % - 74 % - 75 % - 75 % - 76 % - 77 % - 77 % - 78 % - 78 % - 79 % - 80 % - 80 % - 81 % - 81 % - 82 % - 83 % - 83 % - 84 % - 85 % - 85 % - 86 % - 86 % - 87 % - 88 % - 88 % - 89 % - 90 % - 90 % - 91 % - 91 % - 92 % - 93 % - 93 % - 94 % - 95 % - 95 % - 96 % - 96 % - 97 % - 98 % - 98 % - 99 % - 99 % -