Filter a peptide assay on the basis of its adjacency matrix.
Source:R/DaparToolshed_filter_Adjmat.R
adjacency-matrix-filter.Rd
These functions filters (delete) peptides of an assay, applying a function on peptides and proteins. They can be used alone but the usual usage is to create an instance of a class FunctionFilter and to pass it to the function filterFeaturesOneSE in order to create a new assay, embedded into the QFeatures object.
Usage
AdjMatFilters()
allPeptides(object, ...)
specPeptides(object, ...)
subAdjMat_specificPeptides(X)
sharedPeptides(object, ...)
subAdjMat_sharedPeptides(X)
topnFunctions()
topnPeptides(object, fun, top)
subAdjMat_topnPeptides(X, qData, fun, top)
Arguments
- object
An object of class
SummarizedExperiment
- ...
Additional arguments
- X
xxx
- fun
A
list()
of additional parameters- top
A
integer(1)
which is the number of xxx- qData
xxx
Details
This function builds an intermediate matrix with scores for each peptide based on 'fun' parameter. Once this matrix is built, one select the 'n' peptides which have the higher score
The list of filter functions is given by adjMatFilters()
:
specPeptides()
: returns a new assay of classSummazizedExperiment
with only specific peptides;sharedpeptides()
: returns a new assay of classSummazizedExperiment
with only shared peptides;opnPeptides()
: returns a new assay of classSummazizedExperiment
with only the 'n' peptides which best satisfies the condition. The condition is represented by functions which calculates a score for each peptide among all samples. The list of these functions is given bytopnFunctions()
:rowMedians()
: xxx;rowMeans()
: xxx;rowSums()
: xxx;
See also
The QFeatures-filtering-oneSE man page for the
class FunctionFilter
.
Examples
library(Matrix)
#>
#> Attaching package: ‘Matrix’
#> The following object is masked from ‘package:S4Vectors’:
#>
#> expand
library(QFeatures)
#------------------------------------------------
# This function will keep only specific peptides
#------------------------------------------------
f1 <- FunctionFilter("specPeptides", list())
#------------------------------------------------
# This function will keep only shared peptides
#------------------------------------------------
f2 <- FunctionFilter("sharedPeptides", list())
#------------------------------------------------
# This function will keep only the 'n' best peptides
# w.r.t the quantitative sum of each peptides among
# all samples
#------------------------------------------------
f3 <- FunctionFilter("topnPeptides", fun = "rowSums", top = 2)
#------------------------------------------------------
# To run the filter(s) on the dataset, use [xxx()]
# IF several filters must be used, store them in a list
#------------------------------------------------------
data(ft, package='DaparToolshed')
lst.filters <- list()
lst.filters <- append(lst.filters, f1)
lst.filters <- append(lst.filters, f3)
ft <- filterFeaturesOneSE(
object = ft,
i = 1,
name = "filtered",
filters = lst.filters
)