Builds a plot from a dataframe. Same as compareNormalizationD but uses the library highcharter
Source: R/plots_normalization.R
compareNormalizationD_HC.Rd
Plot to compare the quantitative proteomics data before and after
normalization using the package highcharter
Usage
compareNormalizationD_HC(
qDataBefore,
qDataAfter,
keyId = NULL,
conds = NULL,
pal = NULL,
subset.view = NULL,
n = 100,
type = "scatter"
)
Arguments
- qDataBefore
A dataframe that contains quantitative data before normalization.
- qDataAfter
A dataframe that contains quantitative data after normalization.
- keyId
xxx
- conds
A vector of the conditions (one condition per sample).
- pal
xxx
- subset.view
xxx
- n
An integer that is equal to the maximum number of displayed points. This number must be less or equal to the size of the dataset. If it is less than it, it is a random selection
- type
scatter or line
Examples
data(Exp1_R25_prot, package="DaparToolshedData")
obj <- Exp1_R25_prot
qDataBefore <- SummarizedExperiment::assay(obj[[length(obj)]])
conds <- design.qf(obj)$Condition
id <- SummarizedExperiment::rowData(obj[[length(obj)]])[, omXplore::get_colID(obj[[length(obj)]])]
# pal <- ExtendPalette(2)
qDataAfter <- LOESS(qDataBefore, conds, type = "overall")
n <- 1
compareNormalizationD_HC(
qDataBefore = qDataBefore,
qDataAfter = qDataAfter,
keyId = id,
pal = NULL,
n = n,
subset.view = seq_len(n),
conds = conds)
#> Warning: Color palette set to default.